# mars.tensor.arcsinh¶

mars.tensor.arcsinh(x, out=None, where=None, **kwargs)[source]

Inverse hyperbolic sine element-wise.

x : array_like
Input tensor.
out : Tensor, None, or tuple of Tensor and None, optional
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated tensor is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

out : Tensor
Tensor of of the same shape as x.

arcsinh is a multivalued function: for each x there are infinitely many numbers z such that sinh(z) = x. The convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh always returns real output. For each value that cannot be expressed as a real number or infinity, it returns nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytical function that has branch cuts [1j, infj] and [-1j, -infj] and is continuous from the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

  M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
  Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arcsinh
>>> import mars.tensor as mt

>>> mt.arcsinh(mt.array([mt.e, 10.0])).execute()
array([ 1.72538256,  2.99822295])